In Situ Cross-Linked Gel Polymer Electrolyte Membranes with Excellent Thermal Stability for Lithium Ion Batteries.

阅读:3
作者:Xiao Qin, Deng Chun, Wang Qian, Zhang Qiujing, Yue Yong, Ren Shijie
Novel gel polymer electrolyte membranes with excellent thermal stability are fabricated via a combination of physical blending and chemical cross-linking procedures. Precursor porous membranes made of poly(vinylidene fluoride) (PVDF) and polystyrene-poly(ethylene oxide)-polystyrene (PS-PEO-PS) triblock copolymer composites are prepared by a phase-inversion technique, and the gel polymer electrolyte membranes are finished by in situ hypercrosslinking of the PS segments in precursor membranes. The latter cross-linking procedure could consolidate pore configuration and thus greatly enhance the thermal stability of the obtained cross-linked composite membranes. The membranes with optimal PS/PEO ratios can retain reasonable porosity with little dimensional shrinkage at high temperatures up to 260 °C. Gel polymer electrolytes with these cross-linked membranes as matrices exhibit much higher ionic conductivities (up to 1.38 × 10(-3) S cm(-1) at room temperature) than those based on pure PVDF membranes. Li/LiFePO(4) half cells assembled with these gel polymer electrolytes exhibit good cycling performance and rate capability. These results indicate that the Friedel-Crafts reaction based hypercrosslinking is an efficient method to construct highly heat-resistant polymer electrolytes for lithium ion batteries, particularly advantageous in applications that require high-temperature usage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。