BAYESIAN GROUP LASSO FOR NONPARAMETRIC VARYING-COEFFICIENT MODELS WITH APPLICATION TO FUNCTIONAL GENOME-WIDE ASSOCIATION STUDIES.

阅读:3
作者:Li Jiahan, Wang Zhong, Li Runze, Wu Rongling
Although genome-wide association studies (GWAS) have proven powerful for comprehending the genetic architecture of complex traits, they are challenged by a high dimension of single-nucleotide polymorphisms (SNPs) as predictors, the presence of complex environmental factors, and longitudinal or functional natures of many complex traits or diseases. To address these challenges, we propose a high-dimensional varying-coefficient model for incorporating functional aspects of phenotypic traits into GWAS to formulate a so-called functional GWAS or fGWAS. Bayesian group lasso and the associated MCMC algorithms are developed to identify significant SNPs and estimate how they affect longitudinal traits through time-varying genetic actions. The model is generalized to analyze the genetic control of complex traits using subject-specific sparse longitudinal data. The statistical properties of the new model are investigated through simulation studies. We use the new model to analyze a real GWAS data set from the Framingham Heart Study, leading to the identification of several significant SNPs associated with age-specific changes of body mass index. The fGWAS model, equipped with Bayesian group lassso, will provide a useful tool for genetic and developmental analysis of complex traits or diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。