Spatial Mapping of Activity Changes across Sensory Areas Following Visual Deprivation in Adults.

阅读:4
作者:Parkins Samuel, Song Yidong, Jaoui Yanis, Gala Aryan, Konda Kaven T, Richardson Crispo, Lee Hey-Kyoung
Loss of a sensory modality triggers global adaptation across brain areas, allowing the remaining senses to guide behavior more effectively. There are specific synaptic and circuit plasticity observed across many sensory areas, which suggests potential widespread changes in activity. Here we used a cFosTRAP2 mouse line to drive tdTomato (tdT) expression in active cells to spatially map the extent of activity changes in various sensory areas in adult mice of both sexes following two modes of visual deprivation. We found that in the primary visual cortex (V1), both dark exposure (DE) and enucleation (EN) caused an initial loss of active cells followed by a partial rebound, which occurred relatively more in the superficial layers. A similar pattern was observed in the secondary visual cortex, especially in the lateral areas (V2L). The spared primary sensory cortices adapted distinctly. In the primary somatosensory barrel cortex (S1BF), there was a change in the density of active cells dependent on the duration and the mode of visual deprivation. In the primary auditory cortex (A1), there was a relative reduction in the density of active cells in the superficial layers without a significant change in the overall density. There were minimal changes in the active cell density in the secondary cortices of the spared senses and the multisensory retrosplenial cortex (RSP). Our results are consistent with cross-modal recruitment of the deprived visual cortex and compensatory plasticity in the spared primary sensory cortices that can support enhanced processing and refinement of the spared senses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。