DenSleepNet: DenseNet based model for sleep staging with two-frequency feature fusion and coordinate attention.

阅读:4
作者:Liu Zhi, Qin Meiqiao, Lu Yunhua, Luo Sixin, Zhang Qinhan
Sleep staging is often applied to assess the quality of sleep and also be used to prevent and monitor psychiatric disorders caused by sleep. However, it remains a challenge to extract the discriminative features of salient waveforms in sleep EEG and enable the network to effectively classify sleep stages by emphasizing these crucial features, thus achieving higher accuracy. In this study, an end-to-end deep learning model based on DenseNet for automatic sleep staging is designed and constructed. In the framework, two convolutional branches are devised to extract the underlying features (Two-Frequency Feature) at various frequencies, which are then fused and input into the DenseNet module to extract salient waveform features. After that, the Coordinate Attention mechanism is employed to enhance the localization of salient waveform features by emphasizing the position of salient waveforms and the spatial relationship across the entire frequency spectrum. Finally, the obtained features are accessed to the fully connected for sleep staging. The model was validated with a 20-fold cross-validation procedure on two public available datasets, and the overall accuracy, kappa coefficient, and MF1 score reached 92.9%, 78.7, 0.86 and 90.0%, 75.8, 0.80 on Sleep-EDF-20 and Sleep-EDFx, respectively. Experimental results show that the proposed model achieves competitive performance for sleep staging compared with the reported approaches under the identical conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。