Recent Advancements in Graphene-Based Implantable Electrodes for Neural Recording/Stimulation.

阅读:8
作者:Alahi Md Eshrat E, Rizu Mubdiul Islam, Tina Fahmida Wazed, Huang Zhaoling, Nag Anindya, Afsarimanesh Nasrin
Implantable electrodes represent a groundbreaking advancement in nervous system research, providing a pivotal tool for recording and stimulating human neural activity. This capability is integral for unraveling the intricacies of the nervous system's functionality and for devising innovative treatments for various neurological disorders. Implantable electrodes offer distinct advantages compared to conventional recording and stimulating neural activity methods. They deliver heightened precision, fewer associated side effects, and the ability to gather data from diverse neural sources. Crucially, the development of implantable electrodes necessitates key attributes: flexibility, stability, and high resolution. Graphene emerges as a highly promising material for fabricating such electrodes due to its exceptional properties. It boasts remarkable flexibility, ensuring seamless integration with the complex and contoured surfaces of neural tissues. Additionally, graphene exhibits low electrical resistance, enabling efficient transmission of neural signals. Its transparency further extends its utility, facilitating compatibility with various imaging techniques and optogenetics. This paper showcases noteworthy endeavors in utilizing graphene in its pure form and as composites to create and deploy implantable devices tailored for neural recordings and stimulations. It underscores the potential for significant advancements in this field. Furthermore, this paper delves into prospective avenues for refining existing graphene-based electrodes, enhancing their suitability for neural recording applications in in vitro and in vivo settings. These future steps promise to revolutionize further our capacity to understand and interact with the neural research landscape.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。