Identification of Pepper Leaf Diseases Based on TPSAO-AMWNet.

阅读:11
作者:Wan Li, Zhu Wenke, Dai Yixi, Zhou Guoxiong, Chen Guiyun, Jiang Yichu, Zhu Ming'e, He Mingfang
Pepper is a high-economic-value agricultural crop that faces diverse disease challenges such as blight and anthracnose. These diseases not only reduce the yield of pepper but, in severe cases, can also cause significant economic losses and threaten food security. The timely and accurate identification of pepper diseases is crucial. Image recognition technology plays a key role in this aspect by automating and efficiently identifying pepper diseases, helping agricultural workers to adopt and implement effective control strategies, alleviating the impact of diseases, and being of great importance for improving agricultural production efficiency and promoting sustainable agricultural development. In response to issues such as edge-blurring and the extraction of minute features in pepper disease image recognition, as well as the difficulty in determining the optimal learning rate during the training process of traditional pepper disease identification networks, a new pepper disease recognition model based on the TPSAO-AMWNet is proposed. First, an Adaptive Residual Pyramid Convolution (ARPC) structure combined with a Squeeze-and-Excitation (SE) module is proposed to solve the problem of edge-blurring by utilizing adaptivity and channel attention; secondly, to address the issue of micro-feature extraction, Minor Triplet Disease Focus Attention (MTDFA) is proposed to enhance the capture of local details of pepper leaf disease features while maintaining attention to global features, reducing interference from irrelevant regions; then, a mixed loss function combining Weighted Focal Loss and L2 regularization (WfrLoss) is introduced to refine the learning strategy during dataset processing, enhancing the model's performance and generalization capabilities while preventing overfitting. Subsequently, to tackle the challenge of determining the optimal learning rate, the tent particle snow ablation optimizer (TPSAO) is developed to accurately identify the most effective learning rate. The TPSAO-AMWNet model, trained on our custom datasets, is evaluated against other existing methods. The model attains an average accuracy of 93.52% and an F1 score of 93.15%, demonstrating robust effectiveness and practicality in classifying pepper diseases. These results also offer valuable insights for disease detection in various other crops.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。