Uncertain links in host-parasite networks: lessons for parasite transmission in a multi-host system.

阅读:3
作者:Walker Josephine G, Plein Michaela, Morgan Eric R, Vesk Peter A
For many parasites, the full set of hosts that are susceptible to infection is not known, and this could lead to a bias in estimates of transmission. We used counts of individual adult parasites from historical parasitology studies in southern Africa to map a bipartite network of the nematode parasites of herbivore hosts that occur in Botswana. Bipartite networks are used in community ecology to represent interactions across trophic levels. We used a Bayesian hierarchical model to predict the full set of host-parasite interactions from existing data on parasitic gastrointestinal nematodes of wild and domestic ungulates given assumptions about the distribution of parasite counts within hosts, while accounting for the relative uncertainty of less sampled species. We used network metrics to assess the difference between the observed and predicted networks, and to explore the connections between hosts via their shared parasites using a host-host unipartite network projected from the bipartite network. The model predicts a large number of missing links and identifies red hartebeest, giraffe and steenbok as the hosts that have the most uncertainty in parasite diversity. Further, the unipartite network reveals clusters of herbivores that have a high degree of parasite sharing, and these clusters correspond closely with phylogenetic distance rather than with the wild/domestic boundary. These results provide a basis for predicting the risk of cross-species transmission of nematode parasites in areas where livestock and wildlife share grazing land.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。