The prevalence of metal-based reducing reagents, including metals, metal complexes, and metal salts, has produced an empirical order of reactivity that governs our approach to chemical synthesis. However, this reactivity may be influenced by stabilization of transition states, intermediates, and products through substrate-metal bonding. This article reports that in the absence of such stabilizing interactions, established chemoselectivities can be overthrown. Thus, photoactivation of the recently developed neutral organic superelectron donor 5 selectively reduces alkyl-substituted benzene rings in the presence of activated esters and nitriles, in direct contrast to metal-based reductions, opening a new perspective on reactivity. The altered outcomes arising from the organic electron donors are attributed to selective interactions between the neutral organic donors and the arene rings of the substrates.
Overturning established chemoselectivities: selective reduction of arenes over malonates and cyanoacetates by photoactivated organic electron donors.
阅读:4
作者:Doni Eswararao, Mondal Bhaskar, O'Sullivan Steven, Tuttle Tell, Murphy John A
| 期刊: | Journal of the American Chemical Society | 影响因子: | 15.600 |
| 时间: | 2013 | 起止号: | 2013 Jul 31; 135(30):10934-7 |
| doi: | 10.1021/ja4050168 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
