We present a straightforward implementation scheme for solving the time-dependent Schrödinger equation for systems described by the Hubbard Hamiltonian with time-dependent hoppings. The computations can be performed for clusters of up to 14 sites with, in principle, general geometry. For the time evolution, we use the exponential midpoint rule, where the exponentials are computed via a Krylov subspace method, which only uses matrix-vector multiplication. The presented implementation uses standard libraries for constructing sparse matrices and for linear algebra. Therefore, the approach is easy to use on both desktop computers and computational clusters. We apply the method to calculate time evolution of double occupation and nonequilibrium spectral function of a photo-excited Mott-insulator. The results show that not only the double occupation increases due to creation of electron-hole pairs but also the Mott gap becomes partially filled.
Electron-light interaction in nonequilibrium: exact diagonalization for time-dependent Hubbard Hamiltonians.
阅读:6
作者:Innerberger Michael, Worm Paul, Prauhart Paul, Kauch Anna
| 期刊: | European Physical Journal Plus | 影响因子: | 2.900 |
| 时间: | 2020 | 起止号: | 2020;135(11):922 |
| doi: | 10.1140/epjp/s13360-020-00919-2 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
