Three-dimensional (3D) point cloud registration is an important step in three-dimensional (3D) model reconstruction or 3D mapping. Currently, there are many methods for point cloud registration, but these methods are not able to simultaneously solve the problem of both efficiency and precision. We propose a fast method of global registration, which is based on RGB (Red, Green, Blue) value by using the four initial point pairs (FIPP) algorithm. First, the number of different RGB values of points in a dataset are counted and the colors in the target dataset having too few points are discarded by using a color filter. A candidate point set in the source dataset are then generated by comparing the similarity of colors between two datasets with color tolerance, and four point pairs are searched from the two datasets by using an improved FIPP algorithm. Finally, a rigid transformation matrix of global registration is calculated with total least square (TLS) and local registration with the iterative closest point (ICP) algorithm. The proposed method (RGB-FIPP) has been validated with two types of data, and the results show that it can effectively improve the speed of 3D point cloud registration while maintaining high accuracy. The method is suitable for points with RGB values.
Fast Method of Registration for 3D RGB Point Cloud with Improved Four Initial Point Pairs Algorithm.
阅读:3
作者:Li Peng, Wang Ruisheng, Wang Yanxia, Gao Ge
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2019 | 起止号: | 2019 Dec 24; 20(1):138 |
| doi: | 10.3390/s20010138 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
