Ischemia/reperfusion-induced CHOP expression promotes apoptosis and impairs renal function recovery: the role of acidosis and GPR4

缺血/再灌注诱导的 CHOP 表达促进细胞凋亡并损害肾功能恢复:酸中毒和 GPR4 的作用

阅读:9
作者:Biao Dong, Honglan Zhou, Conghui Han, Jufang Yao, Longmei Xu, Ming Zhang, Yaowen Fu, Qiang Xia

Abstract

Endoplasmic reticulum (ER) stress-induced apoptosis is implicated in a wide range of diseases, including ischemia/reperfusion injury (IRI). As a common feature of ER stress, the role of CCAT/enhancer-binding protein homologous protein (CHOP) in renal IRI has not been thoroughly investigated. We found that IR led to renal CHOP expression, accompanied by apoptosis induction. Renal IRI was markedly alleviated in CHOP-/- mice. Observations from bone marrow chimeras showed that this was based on CHOP inactivation in renal parenchymal cells rather than inflammatory cells. In vivo and in vitro studies demonstrated that IRI induced CHOP expression in both endothelial and epithelial cells, which was responsible for apoptosis induction. These results were reinforced by the observation that CHOP knockout led to improvement of the postischemic microcirculatory recovery. In vitro studies revealed hypoxia-induced acidosis to be a major inducer of CHOP in endothelial cells, and neutralizing acidosis not only diminished CHOP protein, but also reduced apoptosis. Finally, knockdown of a proton-sensing G protein-coupled receptor GPR4 markedly reduced CHOP expression and endothelial cell apoptosis after hypoxia exposure. These results highlight the importance of hypoxia-acidosis in ER stress signaling regulation in ischemic kidneys and suggest that GPR4 inhibitors or agents targeting CHOP expression may be promising in the treatment of renal IRI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。