Bayesian spatio-temporal modeling of severe acute respiratory syndrome in Brazil: A comparative analysis across pre-, during, and post-COVID-19 eras.

阅读:12
作者:Souza Bulhões Rodrigo de, Pimentel Jonatha Sousa, Rodrigues Paulo Canas
This paper presents an investigation into the spatio-temporal dynamics of Severe Acute Respiratory Syndrome (SARS) across the diverse health regions of Brazil from 2016 to 2024. Leveraging extensive datasets that include SARS cases, climate data, hospitalization records, and COVID-19 vaccination information, our study employs a Bayesian spatio-temporal generalized linear model to capture the intricate dependencies inherent in the dataset. The analysis reveals significant variations in the incidence of SARS cases over time, particularly during and between the distinct eras of pre-COVID-19, during, and post-COVID-19. Our modeling approach accommodates explanatory variables such as humidity, temperature, and COVID-19 vaccine doses, providing a comprehensive understanding of the factors influencing SARS dynamics. Our modeling revealed unique temporal trends in SARS cases for each region, resembling neighborhood patterns. Low temperature and high humidity were linked to decreased cases, while in the COVID-19 era, temperature and vaccination coverage played significant roles. The findings contribute valuable insights into the spatial and temporal patterns of SARS in Brazil, offering a foundation for targeted public health interventions and preparedness strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。