Microglia/macrophage polarization regulates spontaneous remyelination in intermittent cuprizone model of demyelination.

阅读:6
作者:Zarini Davood, Pasbakhsh Parichehr, Mojaverrostami Sina, Amirizadeh Shiva, Hashemi Maedeh, Shabani Maryam, Noshadian Mehrazin, Kashani Iraj Ragerdi
Central nervous system (CNS) lesions can repeatedly be de-and remyelinated during demyelinating diseases such as multiple sclerosis (MS). Here, we designed an intermittent demyelination model by 0.3 % Cuprizone feeding in C57/BL6 mice followed by two weeks recovery. Histochemical staining of luxol fast blue (LFB) was used for study of remyelination, detection of glial and endothelial cells was performed by immunohistochemistry staining for the following antibodies: anti Olig2 for oligodendrocyte progenitor cells, anti APC for mature oligodendrocytes, anti GFAP for astrocytes, and anti Iba-1 for microglia/macrophages, anti iNOS for M1 microglia/macrophage phenotype, anti TREM-2 for M2 microglia/macrophage phenotype and anti CD31 for endothelial cells. Also, real-time polymerase chain reaction was performed for assessment of the expression of the targeted genes. LFB staining results showed enhanced remyelination in the intermittent cuprizone (INTRCPZ) group, which was accompanied by improved motor function, increased mature oligodendrocyte cells, and reduction of astrogliosis and microgliosis. Moreover, switching from M1 to M2 polarity increased in the INTRCPZ group that was in association with downregulation of pro-inflammatory and upregulation of anti-inflammatory genes. Finally, evaluation of microvascular changes revealed a remarkable decrease in the endothelial cells in the cuprizone (CPZ) group which recovered in the INTERCPZ group. The outcomes demonstrate enhanced myelin content during recovery in the intermittent demyelination model which is in association with reshaping macrophage polarity and modification of glial and endothelial cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。