An incomplete understanding of how agrochemical nanocarrier properties affect their uptake and translocation in plants limits their application for promoting sustainable agriculture. Herein, we investigated how the nanocarrier aspect ratio and charge affect uptake and translocation in monocot wheat (Triticum aestivum) and dicot tomato (Solanum lycopersicum) after foliar application. Leaf uptake and distribution to plant organs were quantified for polymer nanocarriers with the same diameter (â¼10 nm) but different aspect ratios (low (L), medium (M), and high (H), 10-300 nm long) and charges (-50 to +15 mV). In tomato, anionic nanocarrier translocation (20.7 ± 6.7 wt %) was higher than for cationic nanocarriers (13.3 ± 4.1 wt %). In wheat, only anionic nanocarriers were transported (8.7 ± 3.8 wt %). Both low and high aspect ratio polymers translocated in tomato, but the longest nanocarrier did not translocate in wheat, suggesting a phloem transport size cutoff. Differences in translocation correlated with leaf uptake and interactions with mesophyll cells. The positive charge decreases nanocarrier penetration through the leaf epidermis and promotes uptake into mesophyll cells, decreasing apoplastic transport and phloem loading. These results suggest design parameters to provide agrochemical nanocarriers with rapid and complete leaf uptake and an ability to target agrochemicals to specific plant organs, with the potential to lower agrochemical use and the associated environmental impacts.
Charge, Aspect Ratio, and Plant Species Affect Uptake Efficiency and Translocation of Polymeric Agrochemical Nanocarriers.
阅读:3
作者:Zhang Yilin, Martinez Michael R, Sun Hui, Sun Mingkang, Yin Rongguan, Yan Jiajun, Marelli Benedetto, Giraldo Juan Pablo, Matyjaszewski Krzysztof, Tilton Robert D, Lowry Gregory V
| 期刊: | Environmental Science & Technology | 影响因子: | 11.300 |
| 时间: | 2023 | 起止号: | 2023 Jun 6; 57(22):8269-8279 |
| doi: | 10.1021/acs.est.3c01154 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
