Single temperature for Monte Carlo optimization on complex landscapes.

阅读:4
作者:Tolkunov Denis, Morozov Alexandre V
We propose a new strategy for Monte Carlo (MC) optimization on rugged multidimensional landscapes. The strategy is based on querying the statistical properties of the landscape in order to find the temperature at which the mean first passage time across the current region of the landscape is minimized. Thus, in contrast to other algorithms such as simulated annealing, we explicitly match the temperature schedule to the statistics of landscape irregularities. In cases where these statistics are approximately the same over the entire landscape or where nonlocal moves couple distant parts of the landscape, a single-temperature MC scheme outperforms any other MC algorithm with the same move set. We also find that in strongly anisotropic Coulomb spin glass and traveling salesman problems, the only relevant statistics (which we use to assign a single MC temperature) are those of irregularities in low-energy funnels. Our results may explain why protein folding is efficient at constant temperature.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。