2lpiRNApred: a two-layered integrated algorithm for identifying piRNAs and their functions based on LFE-GM feature selection.

阅读:4
作者:Zuo Yun, Zou Quan, Lin Jianyuan, Jiang Min, Liu Xiangrong
Piwi-interacting RNAs (piRNAs) are indispensable in the transposon silencing, including in germ cell formation, germline stem cell maintenance, spermatogenesis, and oogenesis. piRNA pathways are amongst the major genome defence mechanisms, which maintain genome integrity. They also have important functions in tumorigenesis, as indicated by aberrantly expressed piRNAs being recently shown to play roles in the process of cancer development. A number of computational methods for this have recently been proposed, but they still have not yielded satisfactory predictive performance. Moreover, only one computational method that identifies whether piRNAs function in inducting target mRNA deadenylation been reported in the literature. In this study, we developed a two-layered integrated classifier algorithm, 2lpiRNApred. It identifies piRNAs in the first layer and determines whether they function in inducting target mRNA deadenylation in the second layer. A new feature selection algorithm, which was based on Luca fuzzy entropy and Gaussian membership function (LFE-GM), was proposed to reduce the dimensionality of the features. Five feature extraction strategies, namely, Kmer, General parallel correlation pseudo-dinucleotide composition, General series correlation pseudo-dinucleotide composition, Normalized Moreau-Broto autocorrelation, and Geary autocorrelation, and two types of classifier, Sparse Representation Classifier (SRC) and support vector machine with Mahalanobis distance-based radial basis function (SVMMDRBF), were used to construct a two-layered integrated classifier algorithm, 2lpiRNApred. The results indicate that 2lpiRNApred performs significantly better than six other existing prediction tools.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。