N,N-chelated nickel catalysts for highly branched polyolefin elastomers: a survey.

阅读:3
作者:Mahmood Qaiser, Sun Wen-Hua
The physical properties and end applications of polyolefin materials are defined by their chain architectures and topologies. These properties can, in part, be controlled by a judicious choice of the steric and electronic properties of the catalyst and, in particular, the ligand framework. One major achievement in this field is the discovery of thermoplastic polyolefin elastomers that combine the processing and recyclable characteristics of thermoplastics with the flexibility and ductility of elastomers. These polymers are highly sought after as alternative materials to thermoset elastomers. In this perspective, works in the literature related to the development of nickel catalysts as well as their implementations for the synthesis of polyolefin elastomers are summarized in detail. Throughout the perspective, attention has been focused on developing the relationship between catalyst structure and performance, on strategies for the synthesis of polyolefin elastomer using nickel catalysts, on properties of the resultant polyolefin, such as degree of branching and crystallinity, as well as on their effects on mechanical properties. The future perspective regarding the most recent developments in single-step production of polyethylene elastomers will also be presented.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。