Haplotype-aware diplotyping from noisy long reads.

阅读:3
作者:Ebler Jana, Haukness Marina, Pesout Trevor, Marschall Tobias, Paten Benedict
Current genotyping approaches for single-nucleotide variations rely on short, accurate reads from second-generation sequencing devices. Presently, third-generation sequencing platforms are rapidly becoming more widespread, yet approaches for leveraging their long but error-prone reads for genotyping are lacking. Here, we introduce a novel statistical framework for the joint inference of haplotypes and genotypes from noisy long reads, which we term diplotyping. Our technique takes full advantage of linkage information provided by long reads. We validate hundreds of thousands of candidate variants that have not yet been included in the high-confidence reference set of the Genome-in-a-Bottle effort.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。