Improving the utilization of active sites in carbon catalysts is significant for various catalytic reactions, but still challenging, mainly due to the lack of strategies for controllable introduction of active dopants. Herein, a novel "Ar plasma etching-NH(3) annealing" strategy is developed to regulate the position of active N sites, while maintaining the same nitrogen species and contents. Theoretical and experimental results reveal that the edge-hosted-N doped carbon nanotubes (E-N-CNT), with only 0.29 at.% N content, show great affinity to peroxymonosulfate (PMS), and exhibit excellent Fenton-like activity by generating singlet oxygen ((1)O(2)), which can reach as high as 410 times higher than the pristine CNT. The remarkable utilization of edge-hosted nitrogen atom is further verified by the edge-hosted-N enriched carbocatalyst, which shows superior capability for 4-chlorophenol degradation with a turnover frequency (TOF) value as high as 3.82 min(-1), and the impressive TOF value can even surpass those of single-atom catalysts. This work proposes a controllable position regulation of active sites to improve atom utilization, which provides a new insight into the design of excellent Fenton-like catalysts with remarkable atom utilization efficiency.
Remarkable Active Site Utilization in Edge-Hosted-N Doped Carbocatalysts for Fenton-Like Reaction.
阅读:3
作者:Zhong Huajie, Gong Zeyu, Yu Jiaxing, Hou Yu, Tao Yuan, Fu Qi, Yang Huangsheng, Xiao Xinzhe, Cao Xingzhong, Wang Junhui, Ouyang Gangfeng
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2024 | 起止号: | 2024 Nov;11(41):e2404958 |
| doi: | 10.1002/advs.202404958 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
