Highly variable soil dissipation of metaldehyde can explain its environmental persistence and mobility.

阅读:4
作者:Keighley Nathan, Ramwell Carmel, Sinclair Chris, Werner David
There are increasing concerns about the hazard posed to drinking water resources by persistent, mobile, and toxic (PMT) substances in the environment. For example, the extensive use of metaldehyde-based molluscicide to control slug populations in agricultural fields has frequently led to pollution of surface waters and contamination of drinking water at levels exceeding the statutory limit. Regulatory environmental fate assessments and studies in the literature did not predict that metaldehyde would be persistent in the environment, contrary to observations from monitoring schemes. To understand the reasons for this disparity, this study conducted a suite of degradation experiments, covering different soil types and environmentally realistic conditions in Northern Europe, and generated a distribution of DT(50) values for metaldehyde to examine whether degradation rates are underestimated by current risk assessments. The results were found to vary, showing DT(50) values ranging from 3.0 to 4150 days, which indicated that metaldehyde had the potential to become persistent. Lack of prior metaldehyde exposure, high moisture content, low temperature, and locally high metaldehyde concentration under pellets were identified as high-risk conditions for low pesticide biodegradation in UK soils.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。