Integration of Imaging (epi)Genomics Data for the Study of Schizophrenia Using Group Sparse Joint Nonnegative Matrix Factorization.

阅读:4
作者:Wang Min, Huang Ting-Zhu, Fang Jian, Calhoun Vince D, Wang Yu-Ping
Schizophrenia (SZ) is a complex disease. Single nucleotide polymorphism (SNP), brain activity measured by functional magnetic resonance imaging (fMRI) and DNA methylation are all important biomarkers that can be used for the study of SZ. To our knowledge, there has been little effort to combine these three datasets together. In this study, we propose a group sparse joint nonnegative matrix factorization (GSJNMF) model to integrate SNP, fMRI, and DNA methylation for the identification of multi-dimensional modules associated with SZ, which can be used to study regulatory mechanisms underlying SZ at multiple levels. The proposed GSJNMF model projects multiple types of data onto a common feature space, in which heterogeneous variables with large coefficients on the same projected bases are used to identify multi-dimensional modules. We also incorporate group structure information available from each dataset. The genomic factors in such modules have significant correlations or functional associations with several brain activities. At the end, we have applied the method to the analysis of real data collected from the Mind Clinical Imaging Consortium (MCIC) for the study of SZ and identified significant biomarkers. These biomarkers were further used to discover genes and corresponding brain regions, which were confirmed to be significantly associated with SZ.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。