Galeterone, 3β-(hydroxy)-17-(1H-benzimidazole-1-yl)androsta-5,16-diene (Gal, 1) and VNPP433-3β, 3β-(1H-imidazole-1-yl-17-(1H-benzimidazole-1-yl)androsta-5,16-diene (2) are potent molecular glue degrader modulators of AR/AR-V7 and Mnk1/2-eIF4E signaling pathways, and are promising Phase 3 and Phase 1 drug candidates, respectively. Because appropriate salts can be utilized to create new chemical entities with enhanced aqueous solubility, in vivo pharmacokinetics, and enhanced in vitro and in vivo efficacies, the monohydrochloride salt of Gal (3) and the mono- and di-hydrochlorides salts of compound 2, compounds 4 and 5, respectively, were synthesized. The salts were characterized using (1)H NMR, (13)C NMR and HRMS analyses. Compound 3 displayed enhanced in vitro antiproliferative activity (7.4-fold) against three prostate cancer cell lines but surprisingly decreased plasma exposure in the pharmacokinetics study. The antiproliferative activities of the compound 2 salts (4 and 5) were equivalent to that of compound 2, but their oral pharmacokinetic profiles were significantly enhanced. Finally, and most importantly, oral administration of the parent compounds (1 and 2) and their corresponding salts (3, 4 and 5) caused dose-dependent potent inhibition/regression of aggressive and difficult-to-treat CWR22Rv1 tumor xenografts growth, with no apparent host toxicities and were highly more efficacious than the blockbuster FDA-approved prostate cancer drugs, Enzalutamide (Xtandi) and Docetaxel (Taxotere). Thus, the HCl salts of Gal (3) and VNPP433-3β (4 and 5) are excellent orally bioavailable candidates for clinical development.
Salinization Dramatically Enhance the Anti-Prostate Cancer Efficacies of AR/AR-V7 and Mnk1/2 Molecular Glue Degraders, Galeterone and VNPP433-3β Which Outperform Docetaxel and Enzalutamide in CRPC CWR22Rv1 Xenograft Mouse Model.
阅读:5
作者:Thankan Retheesh S, Thomas Elizabeth, Purushottamachar Puranik, Weber David J, Njar Vincent C O
| 期刊: | Bioorganic Chemistry | 影响因子: | 4.700 |
| 时间: | 2023 | 起止号: | 2023 Oct;139:106700 |
| doi: | 10.1016/j.bioorg.2023.106700 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
