We investigated whether brain activity was predictive of future reading skill and, if so, how this brain-behavior correlation informs developmental models of reading. A longitudinal study followed 26 normally developing human children ranging in age from 9 to 15 years who were initially assessed for reading skill and performed a rhyming judgment task during functional magnetic resonance imaging. Patterns of brain activation in this task predicted changes between initial and a follow-up assessment of nonword reading skill administered up to 6 years later. Brain activity in areas typically active during imaging studies of reading was found to predict future nonword reading ability, but the predictive ability of these areas depended on age. Increased activity relative to peers in neural circuits associated with phonological recoding (i.e., inferior frontal gyrus and basal ganglia) was predictive of greater gains in reading fluency in younger children, whereas increased activity relative to peers in orthographic processing circuits (i.e., fusiform gyrus) was predictive of smaller gains in fluency for older children. Interpreted within the context of a connectionist model of reading, these results suggest that younger children who are more sensitive to higher-order phonological word characteristics (e.g., coarticulations) may make greater reading proficiency gains, whereas older children who focus more on whole-word orthographic representations may make smaller proficiency gains.
Prediction of reading skill several years later depends on age and brain region: implications for developmental models of reading.
阅读:5
作者:McNorgan Chris, Alvarez Aubrey, Bhullar Annum, Gayda Jessica, Booth James R
| 期刊: | Journal of Neuroscience | 影响因子: | 4.000 |
| 时间: | 2011 | 起止号: | 2011 Jun 29; 31(26):9641-8 |
| doi: | 10.1523/JNEUROSCI.0334-11.2011 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
