Forecasting the Concentration of Particulate Matter in the Seoul Metropolitan Area Using a Gaussian Process Model.

阅读:5
作者:Jang JoonHo, Shin Seungjae, Lee Hyunjin, Moon Il-Chul
Recently, the population of Seoul has been affected by particulate matter in the atmosphere. This problem can be addressed by developing an elaborate forecasting model to estimate the concentration of fine dust in the metropolitan area. We present a forecasting model of the fine dust concentration with an extended range of input variables, compared to existing models. The model takes inputs from holistic perspectives such as topographical features on the surface, chemical sources of the fine dusts, traffic and the human activities in sub-areas, and meteorological data such as wind, temperature, and humidity, of fine dust. Our model was evaluated by the index-of-agreement (IOA) and the root mean-squared error (RMSE) in predicting PM2.5 and PM10 over three subsequent days. Our model variations consist of linear regressions, ARIMA, and Gaussian process regressions (GPR). The GPR showed the best performance in terms of IOA that is over 0.6 in the three-day predictions.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。