Design and synthesis of 1,4,8-triazaspiro[4.5]decan-2-one derivatives as novel mitochondrial permeability transition pore inhibitors.

阅读:4
作者:Albanese Valentina, Pedriali Gaia, Fabbri Martina, Ciancetta Antonella, Ravagli Silvia, Roccatello Chiara, Guerrini Remo, Morciano Giampaolo, Preti Delia, Pinton Paolo, Pacifico Salvatore
Ischaemia/reperfusion injury (IRI) is a condition that occurs when tissues from different organs undergo reperfusion following an ischaemic event. The mitochondrial permeability transition pore (mPTP), a multiprotein platform including structural components of ATP synthase with putative gate function, is an emerging pharmacological target that could be modulated to facilitate the restoration of organ function after a hypoxic insult. Herein, we reported the synthesis and biological characterisation of new molecules with a 1,4,8-triaza-spiro[4.5]decan-2-one framework of potential interest for the treatment of IRI able to inhibit the opening of mPTP in a cardiac model in vitro. Modelling studies were useful to rationalise the observed structure-activity relationship detecting a binding site for the investigated molecules at the interface between the c(8)-ring and subunit a of ATP synthase. Compound 14e was shown to display high potency as mPTP inhibitor combined with the capability to counteract cardiomyocytes death in an in vitro model of hypoxia/reoxygenation.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。