Design and synthesis of 1,4,8-triazaspiro[4.5]decan-2-one derivatives as novel mitochondrial permeability transition pore inhibitors.

阅读:13
作者:Albanese Valentina, Pedriali Gaia, Fabbri Martina, Ciancetta Antonella, Ravagli Silvia, Roccatello Chiara, Guerrini Remo, Morciano Giampaolo, Preti Delia, Pinton Paolo, Pacifico Salvatore
Ischaemia/reperfusion injury (IRI) is a condition that occurs when tissues from different organs undergo reperfusion following an ischaemic event. The mitochondrial permeability transition pore (mPTP), a multiprotein platform including structural components of ATP synthase with putative gate function, is an emerging pharmacological target that could be modulated to facilitate the restoration of organ function after a hypoxic insult. Herein, we reported the synthesis and biological characterisation of new molecules with a 1,4,8-triaza-spiro[4.5]decan-2-one framework of potential interest for the treatment of IRI able to inhibit the opening of mPTP in a cardiac model in vitro. Modelling studies were useful to rationalise the observed structure-activity relationship detecting a binding site for the investigated molecules at the interface between the c(8)-ring and subunit a of ATP synthase. Compound 14e was shown to display high potency as mPTP inhibitor combined with the capability to counteract cardiomyocytes death in an in vitro model of hypoxia/reoxygenation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。