Hierarchical Porous Carbon Electrodes with Sponge-Like Edge Structures for the Sensitive Electrochemical Detection of Heavy Metals.

阅读:2
作者:Lee Jongmin, Kim Soosung, Shin Heungjoo
This article presents the development of a highly sensitive electrochemical heavy metal sensor based on hierarchical porous carbon electrodes with sponge-like edge structures. Micrometer-scale hierarchical nanoporous carbon electrodes were fabricated at a wafer-scale using cost-effective batch microfabrication technologies, including the carbon microelectromechanical systems technology and oxygen plasma etching. The sponge-like hierarchical porous structure and sub-micrometer edges of the nanoporous carbon electrodes facilitate fast electron transfer rate and large active sites, leading to the efficient formation of dense heavy metal alloy particles of small sizes during the preconcentration step. This enhanced the peak current response during the square wave anodic stripping voltammetry, enabling the detection of Cd(II) and Pb(II) at concentrations as low as 0.41 and 0.7 μg L(-1), respectively, with high sensitivity per unit sensing area (Cd: 109.45 nA μg(-1) L mm(-2), Pb: 100.37 nA μg(-1) L mm(-2)).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。