Effect of Differential Self-Assembly on Mechanochromic Luminescence of Fluorene-Benzothiadiazole-Based Fluorophores.

阅读:3
作者:Naeem Karattu Chali, Neenu Kadaikkara, Nair Vijayakumar C
Supramolecular self-assembly is an excellent tool for controlling the optical and electronic properties of chromophore-based molecular systems. Herein, we demonstrate how differential self-assembly affects mechanoresponsive luminescence of fluorene-benzothiadiazole-based fluorophores. We have synthesized two donor-acceptor-donor-type conjugated oligomers consisting of fluorene as the donor and benzothiadiazole as the acceptor. For facile self-assembly, both molecules are end-functionalized with hydrogen-bonding amide groups. Differential self-assembly was induced by attaching alkyl chains of different lengths onto the fluorene moiety: hexyl (FB-C6) and dodecyl (FB-C12). The molecules self-assemble to form well-defined nanostructures in nonpolar solvents and solvent mixtures. Although their optical properties in solution are not affected by the alkyl chain length, significant effects were observed in the self-assembled state, particularly in the excitation energy migration properties. As a result, remarkable differences were observed in the mechanochromic luminescence properties of the molecules. A precise structure-property correlation is made using UV-visible absorption and fluorescence spectroscopy, time-correlated single-photon counting analysis, scanning electron microscopy, and X-ray diffraction spectroscopy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。