BACKGROUND: The sign test is a well-known non-parametric approach for testing whether one of two conditions is preferable to another. In medicine, this method may be used when one is interested in testing in the context of a clinical trial whether either of the two treatments that are provided to study subjects is favored over the other. When neither treatment outperforms the other within a given individual, a "tie" is said to have occurred. When planning such a trial and estimating statistical power and/or sample size, one should consider the probability of a tie occurring (P(T)). This paper quantifies the degree to which uncertainty in P(T) affects a study's statistical power. METHODS: Binomial theory was used to calculate power given varying levels of uncertainty and varying distributional forms (i.e. beta, uniform) for P(T). RESULTS: Across a range of prior distributions for P(T), power was reduced (i.e. <80%) for 46 (71.9%) of 64 experimental conditions, with large reductions (i.e. power <70%) for 10 (15.6%) of them. CONCLUSIONS: When designing a clinical trial that will incorporate the sign test to compare 2 conditions, ignoring potential variation in the probability of a tie occurring will tend to result in an underpowered study. These findings have implications to the design of any clinical trial for which assumptions are made in calculating an appropriate sample size.
The power of the sign test given uncertainty in the proportion of tied observations.
阅读:8
作者:Nietert Paul J, Dooley Mary J
| 期刊: | Contemporary Clinical Trials | 影响因子: | 1.900 |
| 时间: | 2011 | 起止号: | 2011 Jan;32(1):147-50 |
| doi: | 10.1016/j.cct.2010.10.007 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
