Although rod and cone photoreceptor cells in the vertebrate retina are anatomically connected or coupled by gap junctions, a type of electrical synapse, rod-cone electrical coupling is thought to be weak. Using tracer labeling and electrical recording in the goldfish retina and tracer labeling in the mouse retina, we show that the retinal circadian clock, and not the retinal response to the visual environment, controls the extent and strength of rod-cone coupling by activating dopamine D(2)-like receptors in the day, so that rod-cone coupling is weak during the day but remarkably robust at night. The results demonstrate that circadian control of rod-cone electrical coupling serves as a synaptic switch that allows cones to receive very dim light signals from rods at night, but not in the day. The increase in the strength and extent of rod-cone coupling at night may facilitate the detection of large dim objects.
The circadian clock in the retina controls rod-cone coupling.
阅读:9
作者:Ribelayga Christophe, Cao Yu, Mangel Stuart C
| 期刊: | Neuron | 影响因子: | 15.000 |
| 时间: | 2008 | 起止号: | 2008 Sep 11; 59(5):790-801 |
| doi: | 10.1016/j.neuron.2008.07.017 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
