SARS-CoV-2 variant introduction following spring break travel and transmission mitigation strategies.

阅读:3
作者:Napolitano Justin M, Srikanth Sujata, Noorai Rooksana E, Wilson Stevin, Williams Kaitlyn E, Rosales-Garcia Ramses A, Krueger Brian, Emerson Chloe, Parker Scott, Pruitt John, Dango Rachel, Iyer Lax, Shafi Adib, Jayawardena Iromi, Parkinson Christopher L, McMahan Christopher, Rennert Lior, Peng Congyue Annie, Dean Delphine
BACKGROUND: University spring break carries a two-pronged SARS-CoV-2 variant transmission risk. Circulating variants from universities can spread to spring break destinations, and variants from spring break destinations can spread to universities and surrounding communities. Therefore, it is critical to implement SARS-CoV-2 variant surveillance and testing strategies to limit community spread before and after spring break to mitigate virus transmission and facilitate universities safely returning to in-person teaching. METHODS: We examined the SARS-CoV-2 positivity rate and changes in variant lineages before and after the university spring break for two consecutive years. 155 samples were sequenced across four time periods: pre- and post-spring break 2021 and pre- and post-spring break 2022; following whole genome sequencing, samples were assigned clades. The clades were then paired with positivity and testing data from over 50,000 samples. RESULTS: In 2021, the number of variants in the observed population increased from four to nine over spring break, with variants of concern being responsible for most of the cases; Alpha percent composition increased from 22.2% to 56.4%. In 2022, the number of clades in the population increased only from two to three, all of which were Omicron or a sub-lineage of Omicron. However, phylogenetic analysis showed the emergence of distantly related sub-lineages. 2022 saw a greater increase in positivity than 2021, which coincided with a milder mitigation strategy. Analysis of social media data provided insight into student travel destinations and how those travel events may have impacted spread. CONCLUSIONS: We show the role that repetitive testing can play in transmission mitigation, reducing community spread, and maintaining in-person education. We identified that distantly related lineages were brought to the area after spring break travel regardless of the presence of a dominant variant of concern.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。