CSFPre: Expressway key sections based on CEEMDAN-STSGCN-FCM during the holidays for traffic flow prediction.

阅读:3
作者:Chen Libiao, Ren Qiang, Zeng Juncheng, Zou Fumin, Luo Sheng, Tian Junshan, Xing Yue
The implementation of the toll free during holidays makes a large number of traffic jams on the expressway. Real-time and accurate holiday traffic flow forecasts can assist the traffic management department to guide the diversion and reduce the expressway's congestion. However, most of the current prediction methods focus on predicting traffic flow on ordinary working days or weekends. There are fewer studies for festivals and holidays traffic flow prediction, it is challenging to predict holiday traffic flow accurately because of its sudden and irregular characteristics. Therefore, we put forward a data-driven expressway traffic flow prediction model based on holidays. Firstly, Electronic Toll Collection (ETC) gantry data and toll data are preprocessed to realize data integrity and accuracy. Secondly, after Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) processing, the preprocessed traffic flow is sorted into trend terms and random terms, and the spatial-temporal correlation and heterogeneity of each component are captured simultaneously using the Spatial-Temporal Synchronous Graph Convolutional Networks (STSGCN) model. Finally, the fluctuating traffic flow of holidays is predicted using Fluctuation Coefficient Method (FCM). Through experiments of real ETC gantry data and toll data in Fujian Province, this method is superior to all baseline methods and has achieved good results. It can provide reference for future public travel choices and further road network operation.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。