Maturation of mesocorticolimbic dopamine systems occurs during adolescence, and exposure to social stress during this period results in behavioral dysfunction including substance abuse disorders. Adult male rats exposed to repeated social defeat in adolescence exhibit reduced basal dopamine tissue content in the medial prefrontal cortex, altered dopamine tissue content in corticoaccumbal dopamine regions following acute amphetamine, and increased amphetamine conditioned place preference following repeated amphetamine treatment. Such changes may reflect altered amphetamine-induced extracellular dopamine release in the corticoaccumbal regions. Therefore, we used in vivo microdialysis to measure extracellular dopamine simultaneously within the medial prefrontal cortex and nucleus accumbens core of previously defeated rats and controls, in response to either acute or repeated (7 daily injections) of amphetamine (1.0 mg/kg). Locomotion responses to acute/repeated amphetamine were also assessed the day prior to taking dopamine measurements. Adolescent defeat potentiated adult locomotion responses to acute amphetamine, which was negatively correlated with attenuated amphetamine-induced dopamine release in the medial prefrontal cortex, but there was no difference in amphetamine-induced accumbal dopamine release. However, both locomotion and corticoaccumbal dopamine responses to repeated amphetamine were equivalent between previously defeated rats and controls. These data suggest adolescent defeat enhances behavioral responses to initial amphetamine exposure as a function of diminished prefrontal cortex dopamine activity, which may be sufficient to promote subsequently enhanced seeking of drug-associated cues. Interestingly, repeated amphetamine treatment appears to normalize amphetamine-elicited locomotion and cortical dopamine responses observed in adult rats exposed to adolescent social defeat, providing implications for treating stress-induced dopamine dysfunction.
Effects of adolescent social defeat on adult amphetamine-induced locomotion and corticoaccumbal dopamine release in male rats.
阅读:8
作者:Burke Andrew R, Forster Gina L, Novick Andrew M, Roberts Christina L, Watt Michael J
| 期刊: | Neuropharmacology | 影响因子: | 4.600 |
| 时间: | 2013 | 起止号: | 2013 Apr;67:359-69 |
| doi: | 10.1016/j.neuropharm.2012.11.013 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
