PURPOSE: To evaluate explanations for contrast sensitivity (CS) losses in subjects who have mild nonproliferative diabetic retinopathy (NPDR) or no diabetic retinopathy (NDR) by measuring and modeling CS in luminance noise. METHODS: Ten diabetic subjects with NDR, 10 with mild NPDR, and 10 age-equivalent nondiabetic controls participated. Contrast threshold energy (Et) was measured for letters presented in the absence of noise (Et0) and in four levels of luminance noise. Data were fit with the linear amplifier model to estimate inferred noise level within the visual pathway (Neq) and sampling efficiency (ability to use stimulus information optimally). Et0, Neq, and efficiency were compared to clinical characteristics. RESULTS: Neq was correlated with Et0 for the diabetic subjects (r = 0.93, P < 0.001) and ranged from normal to 12-times the upper limit of normal. ANOVA indicated significant differences among the subject groups for Et0 and Neq (both F > 11.92, P < 0.001). Et0 and Neq were elevated for the mild NPDR group compared to the control and NDR groups (all t > 3.89, P ⤠0.001); the NDR and control groups did not differ significantly (all t < 0.61, P > 0.55). There were no significant efficiency differences among the groups (F = 1.29, P = 0.29). Neq was correlated significantly with disease duration, microperimetric sensitivity, and Pelli-Robson CS. CONCLUSIONS: Elevated contrast threshold may be associated with increased intrinsic noise in early-stage diabetic subjects. Results suggest that noise-based CS measurements can provide important information about early neural dysfunction in these individuals.
Reduced Contrast Sensitivity is Associated With Elevated Equivalent Intrinsic Noise in Type 2 Diabetics Who Have Mild or No Retinopathy.
阅读:3
作者:McAnany J Jason, Park Jason C
| 期刊: | Investigative Ophthalmology & Visual Science | 影响因子: | 4.700 |
| 时间: | 2018 | 起止号: | 2018 May 1; 59(6):2652-2658 |
| doi: | 10.1167/iovs.18-24151 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
