This study aims to determine the effects of appropriate experimental parameters on the thermophysical properties of molten micro droplets, Sn-3Ag-0.5Cu solder balls with an average droplet diameter of 50 μm were prepared. The inkjet printing parameters of the molten micro droplets, such as the dot spacing, stage velocity and sample temperature, were optimized in the 1D and 2D printing of metallic microstructures. The impact and mergence of molten micro droplets were observed with a high-speed digital camera. The line width of each sample was then calculated using a formula over a temperature range of 30 to 70 °C. The results showed that a metallic line with a width of 55 μm can be successfully printed with dot spacing (50 μm) and the stage velocity (50 mmâs(-1)) at the substrate temperature of 30 °C. The experimental results revealed that the height (from 0.63 to 0.58) and solidification contact angle (from 72° to 56°) of the metallic micro droplets decreased as the temperature of the sample increased from 30 to 70 °C. High-speed digital camera (HSDC) observations showed that the quality of the 3D micro patterns improved significantly when the droplets were deposited at 70 °C.
Direct Printing of 1-D and 2-D Electronically Conductive Structures by Molten Lead-Free Solder.
阅读:3
作者:Wang Chien-Hsun, Tsai Ho-Lin, Hwang Weng-Sing
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2016 | 起止号: | 2016 Dec 22; 10(1):1 |
| doi: | 10.3390/ma10010001 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
