We studied how the interactions among animals in a collective allow for the transfer of information. We performed laboratory experiments to study how zebrafish in a collective follow a subset of trained animals that move towards a light when it turns on because they expect food at that location. We built some deep learning tools to distinguish from video which are the trained and the naïve animals and to detect when each animal reacts to the light turning on. These tools gave us the data to build a model of interactions that we designed to have a balance between transparency and accuracy. The model finds a low-dimensional function that describes how a naïve animal weights neighbours depending on focal and neighbour variables. According to this low-dimensional function, neighbour speed plays an important role in the interactions. Specifically, a naïve animal weights more a neighbour in front than to the sides or behind, and more so the faster the neighbour is moving; and if the neighbour moves fast enough, the differences coming from the neighbour's relative position largely disappear. From the lens of decision-making, neighbour speed acts as confidence measure about where to go. This article is part of a discussion meeting issue 'Collective behaviour through time'.
A study of transfer of information in animal collectives using deep learning tools.
阅读:4
作者:Romero-Ferrero Francisco, Heras Francisco J H, Rance Dean, de Polavieja Gonzalo G
| 期刊: | Philosophical Transactions of the Royal Society B-Biological Sciences | 影响因子: | 4.700 |
| 时间: | 2023 | 起止号: | 2023 Apr 10; 378(1874):20220073 |
| doi: | 10.1098/rstb.2022.0073 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
