Understanding the sense of discourse relations between segments of text is essential to truly comprehend any natural language text. Several automated approaches have been suggested, but all rely on external resources, linguistic feature engineering, and their processing pipelines are built from substantially different models. In this paper, we introduce a novel system for sense classification of shallow discourse relations (FR system) based on focused recurrent neural networks (RNNs). In contrast to existing systems, FR system consists of a single end-to-end trainable model for handling all types and senses of discourse relations, requires no feature engineering or external resources, is language-independent, and can be applied at the word and even character levels. At its core, we present our novel generalization of the focused RNNs layer, the first multi-dimensional RNN-attention mechanism for constructing text/argument embeddings. The filtering/gating RNN enables downstream RNNs to focus on different aspects of the input sequence and project it into several embedding subspaces. These argument embeddings are then used to perform sense classification. FR system has been evaluated using the official datasets and methodology of CoNLL 2016 Shared Task. It does not fall a lot behind state-of-the-art performance on English, the most researched and supported language, but it outperforms existing best systems by 2.5% overall results on the Chinese blind dataset.
Sense classification of shallow discourse relations with focused RNNs.
阅读:4
作者:Weiss Gregor, Bajec Marko
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2018 | 起止号: | 2018 Oct 30; 13(10):e0206057 |
| doi: | 10.1371/journal.pone.0206057 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
