Developing a sensing layer with high electroactive properties is an important aspect for proper functionality of a wearable sensor. The polymeric nanocomposite material obtained by a simple electropolymerization on gold interdigitated electrodes (IDEs) can be optimized to have suitable conductive properties to be used with direct current (DC) measurements. A new layer based on polyaniline:poly(4-styrenesulfonate) (PANI:PSS)/single-walled carbon nanotubes (SWCNT)/ferrocene (Fc) was electrosynthesized and deposed on interdigital transducers (IDT) and was characterized in detail using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoemission spectroscopy (XPS), and X-ray diffraction (XRD). The sensor characteristics of the material towards carbon monoxide (CO) in the concentration range of 10-300 ppm were examined, showing a minimal relative humidity interference of only 1% and an increase of sensitivity with the increase of CO concentration. Humidity interference could be controlled by the number of CV cycles when a compact layer was formed and the addition of Fc played an important role in the decrease of humidity. The results for CO detection can be substantially improved by optimizing the number of deposition cycles and enhancing the Fc concentration. The material was developed for selective detection of CO in real environmental conditions and shows good potential for use in a wearable sensor.
A New Hybrid Sensitive PANI/SWCNT/Ferrocene-Based Layer for a Wearable CO Sensor.
阅读:4
作者:Savin Mihaela, Mihailescu Carmen-Marinela, Avramescu Viorel, Dinulescu Silviu, Firtat Bogdan, Craciun Gabriel, Brasoveanu Costin, Pachiu Cristina, Romanitan Cosmin, Serban Andreea-Bianca, Ion Alina Catrinel, Moldovan Carmen
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2021 | 起止号: | 2021 Mar 5; 21(5):1801 |
| doi: | 10.3390/s21051801 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
