Person re-identification is concerned with matching people across disjointed camera views at different places and different time instants. This task results of great interest in computer vision, especially in video surveillance applications where the re-identification and tracking of persons are required on uncontrolled crowded spaces and after long time periods. The latter aspects are responsible for most of the current unsolved problems of person re-identification, in fact, the presence of many people in a location as well as the passing of hours or days give arise to important visual appearance changes of people, for example, clothes, lighting, and occlusions; thus making person re-identification a very hard task. In this paper, for the first time in the state-of-the-art, a meta-feature based Long Short-Term Memory (LSTM) hashing model for person re-identification is presented. Starting from 2D skeletons extracted from RGB video streams, the proposed method computes a set of novel meta-features based on movement, gait, and bone proportions. These features are analysed by a network composed of a single LSTM layer and two dense layers. The first layer is used to create a pattern of the person's identity, then, the seconds are used to generate a bodyprint hash through binary coding. The effectiveness of the proposed method is tested on three challenging datasets, that is, iLIDS-VID, PRID 2011, and MARS. In particular, the reported results show that the proposed method, which is not based on visual appearance of people, is fully competitive with respect to other methods based on visual features. In addition, thanks to its skeleton model abstraction, the method results to be a concrete contribute to address open problems, such as long-term re-identification and severe illumination changes, which tend to heavily influence the visual appearance of persons.
Bodyprint-A Meta-Feature Based LSTM Hashing Model for Person Re-Identification.
阅读:3
作者:Avola Danilo, Cinque Luigi, Fagioli Alessio, Foresti Gian Luca, Pannone Daniele, Piciarelli Claudio
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2020 | 起止号: | 2020 Sep 18; 20(18):5365 |
| doi: | 10.3390/s20185365 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
