BACKGROUND: Brucellosis, a zoonosis caused by the genus Brucella, has been eradicated in Northern Europe, Australia, the USA and Canada, but remains endemic in most areas of the world. The strain and biovar typing of Brucella field samples isolated in outbreaks is useful for tracing back source of infection and may be crucial for discriminating naturally occurring outbreaks versus bioterrorist events, being Brucella a potential biological warfare agent. In the last years MLVA-16 has been described for Brucella spp. genotyping. The MLVA band profiles may be resolved by different techniques i.e. the manual agarose gels, the capillary electrophoresis sequencing systems or the microfluidic Lab-on-Chip electrophoresis. In this paper we described a high throughput system of MLVA-16 typing for Brucella spp. by using of the microfluidics technology. RESULTS: The Caliper LabChip 90 equipment was evaluated for MLVA-16 typing of sixty-three Brucella samples. Furthermore, in order to validate the system, DNA samples previously resolved by sequencing system and Agilent technology, were de novo genotyped. The comparison of the MLVA typing data obtained by the Caliper equipment and those previously obtained by the other analysis methods showed a good correlation. However the outputs were not accurate as the Caliper DNA fragment sizes showed discrepancies compared with real data and a conversion table from observed to expected data was created. CONCLUSION: In this paper we described the MLVA-16 using a rapid, sophisticated microfluidics technology for detection of amplification product sizes. The comparison of the MLVA typing data produced by Caliper LabChip 90 system with the data obtained by different techniques showed a general concordance of the results. Furthermore this platform represents a significant improvement in terms of handling, data acquiring, computational efficiency and rapidity, allowing to perform the strain genotyping in a time equal to one sixth respect to other microfluidics systems as e.g. the Agilent 2100 bioanalyzer.Finally, this platform can be considered a valid alternative to standard genotyping techniques, particularly useful dealing with a large number of samples in short time. These data confirmed that this technology represents a significative advancement in high-throughput accurate Brucella genotyping.
High throughput MLVA-16 typing for Brucella based on the microfluidics technology.
阅读:4
作者:De Santis Riccardo, Ciammaruconi Andrea, Faggioni Giovanni, Fillo Silvia, Gentile Bernardina, Di Giannatale Elisabetta, Ancora Massimo, Lista Florigio
| 期刊: | BMC Microbiology | 影响因子: | 4.200 |
| 时间: | 2011 | 起止号: | 2011 Mar 24; 11:60 |
| doi: | 10.1186/1471-2180-11-60 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
