Head Movements Control the Activity of Primary Visual Cortex in a Luminance-Dependent Manner.

阅读:4
作者:Bouvier Guy, Senzai Yuta, Scanziani Massimo
The vestibular system broadcasts head-movement-related signals to sensory areas throughout the brain, including visual cortex. These signals are crucial for the brain's ability to assess whether motion of the visual scene results from the animal's head movements. However, how head movements affect visual cortical circuits remains poorly understood. Here, we discover that ambient luminance profoundly transforms how mouse primary visual cortex (V1) processes head movements. While in darkness, head movements result in overall suppression of neuronal activity; in ambient light, the same head movements trigger excitation across all cortical layers. This light-dependent switch in how V1 processes head movements is controlled by somatostatin-expressing (SOM) inhibitory neurons, which are excited by head movements in dark, but not in light. This study thus reveals a light-dependent switch in the response of V1 to head movements and identifies a circuit in which SOM cells are key integrators of vestibular and luminance signals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。