Comparison of barley succession and take-all disease as environmental factors shaping the rhizobacterial community during take-all decline.

阅读:7
作者:Schreiner Karin, Hagn Alexandra, Kyselková Martina, Moënne-Loccoz Yvan, Welzl Gerhard, Munch Jean Charles, Schloter Michael
The root disease take-all, caused by Gaeumannomyces graminis var. tritici, can be managed by monoculture-induced take-all decline (TAD). This natural biocontrol mechanism typically occurs after a take-all outbreak and is believed to arise from an enrichment of antagonistic populations in the rhizosphere. However, it is not known whether these changes are induced by the monoculture or by ecological rhizosphere conditions due to a disease outbreak and subsequent attenuation. This question was addressed by comparing the rhizosphere microflora of barley, either inoculated with the pathogen or noninoculated, in a microcosm experiment in five consecutive vegetation cycles. TAD occurred in soil inoculated with the pathogen but not in noninoculated soil. Bacterial community analysis using terminal restriction fragment length polymorphism of 16S rRNA showed pronounced population shifts in the successive vegetation cycles, but pathogen inoculation had little effect. To elucidate rhizobacterial dynamics during TAD development, a 16S rRNA-based taxonomic microarray was used. Actinobacteria were the prevailing indicators in the first vegetation cycle, whereas the third cycle-affected most severely by take-all-was characterized by Proteobacteria, Bacteroidetes, Chloroflexi, Planctomycetes, and Acidobacteria. Indicator taxa for the last cycle (TAD) belonged exclusively to Proteobacteria, including several genera with known biocontrol traits. Our results suggest that TAD involves monoculture-induced enrichment of plant-beneficial taxa.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。