Molecular reconstruction of mGluR5a-mediated endocannabinoid signaling cascade in single rat sympathetic neurons

大鼠单个交感神经元中 mGluR5a 介导的内源性大麻素信号级联的分子重建

阅读:7
作者:Yu-Jin Won, Henry L Puhl 3rd, Stephen R Ikeda

Abstract

Endocannabinoids (eCB) such as 2-arachidonylglycerol (2-AG) are lipid metabolites that are synthesized in a postsynaptic neurons and act upon CB(1) cannabinoid receptors (CB(1)R) in presynaptic nerve terminals. This retrograde transmission underlies several forms of short and long term synaptic plasticity within the CNS. Here, we constructed a model system based on isolated rat sympathetic neurons, in which an eCB signaling cascade could be studied in a reduced, spatially compact, and genetically malleable system. We constructed a complete eCB production/mobilization pathway by sequential addition of molecular components. Heterologous expression of four components was required for eCB production and detection: metabotropic glutamate receptor 5a (mGluR5a), Homer 2b, diacylglycerol lipase alpha, and CB(1)R. In these neurons, application of l-glutamate produced voltage-dependent modulation of N-type Ca(2+) channels mediated by activation of CB(1)R. Using both molecular dissection and pharmacological agents, we provide evidence that activation of mGluR5a results in rapid enzymatic production of 2-AG followed by activation of CB(1)R. These experiments define the critical elements required to recapitulate retrograde eCB production and signaling in a single peripheral neuron. Moreover, production/mobilization of eCB can be detected on a physiologically relevant time scale using electrophysiological techniques. The system provides a platform for testing candidate molecules underlying facilitation of eCB transport across the plasma membrane.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。