Elucidating stygofaunal trophic web interactions via isotopic ecology.

阅读:3
作者:Saccò Mattia, Blyth Alison J, Humphreys William F, Kuhl Alison, Mazumder Debashish, Smith Colin, Grice Kliti
Subterranean ecosystems host highly adapted aquatic invertebrate biota which play a key role in sustaining groundwater ecological functioning and hydrological dynamics. However, functional biodiversity studies in groundwater environments, the main source of unfrozen freshwater on Earth, are scarce, probably due to the cryptic nature of the systems. To address this, we investigate groundwater trophic ecology via stable isotope analysis, employing δ13C and δ15N in bulk tissues, and amino acids. Specimens were collected from a shallow calcrete aquifer in the arid Yilgarn region of Western Australia: a well-known hot-spot for stygofaunal biodiversity. Sampling campaigns were carried out during dry (low rainfall: LR) and the wet (high rainfall: HR) periods. δ13C values indicate that most of the stygofauna shifted towards more 13C-depleted carbon sources under HR, suggesting a preference for fresher organic matter. Conversion of δ15N values in glutamic acid and phenylalanine to a trophic index showed broadly stable trophic levels with organisms clustering as low-level secondary consumers. However, mixing models indicate that HR conditions trigger changes in dietary preferences, with increasing predation of amphipods by beetle larvae. Overall, stygofauna showed a tendency towards opportunistic and omnivorous habits-typical of an ecologically tolerant community-shaped by bottom-up controls linked with changes in carbon flows. This study provides baseline biochemical and ecological data for stygofaunal trophic interactions in calcretes. Further studies on the carbon inputs and taxa-specific physiology will help refine the interpretation of the energy flows shaping biodiversity in groundwaters. This will aid understanding of groundwater ecosystem functioning and allow modelling of the impact of future climate change factors such as aridification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。