Tea and Chicory Extract Characterization, Classification and Authentication by Non-Targeted HPLC-UV-FLD Fingerprinting and Chemometrics.

阅读:4
作者:Pons Josep, Bedmar Àlex, Núñez Nerea, Saurina Javier, Núñez Oscar
Tea is a widely consumed drink in the world which is susceptible to undergoing adulterations to reduce manufacturing costs and rise financial benefits. The development of simple analytical methodologies to assess tea authenticity, as well as to detect and quantify frauds, is an important matter considering the rise of adulteration issues in recent years. In the present study, untargeted HPLC-UV and HPLC-FLD fingerprinting methods were employed to characterize, classify, and authenticate tea extracts belonging to different varieties (red, green, black, oolong, and white teas) by partial least squares-discriminant analysis (PLS-DA), as well as to detect and quantify adulteration frauds when chicory was used as the adulterant by partial least squares (PLS) regression, to ensure the authenticity and integrity of foodstuffs. Overall, PLS-DA showed a good classification and grouping of the tea samples according to the tea variety and, except for some white tea extracts, perfectly discriminated from the chicory ones. One hundred percent classification rates for the PLS-DA calibration models were achieved, except for green and oolong tea when HPLC-FLD fingerprints were employed, which showed classification rates of 96.43% and 95.45%, respectively. Good predictions were also accomplished, also showing, in almost all the cases, a 100% classification rate for prediction, with the exception of white tea and oolong tea when HPLC-UV fingerprints were employed that exhibited a classification rate of 77.78% and 88.89%, respectively. Good PLS results for chicory adulteration detection and quantitation were also accomplished, with calibration, cross-validation, and external validation errors beneath 1.4%, 6.4%, and 3.7%, respectively. Acceptable prediction errors (below 21.7%) were also observed, except for white tea extracts that showed higher errors which were attributed to the low sample variability available.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。