Spectral clustering of single-cell multi-omics data on multilayer graphs.

阅读:4
作者:Zhang Shuyi, Leistico Jacob R, Cho Raymond J, Cheng Jeffrey B, Song Jun S
MOTIVATION: Single-cell sequencing technologies that simultaneously generate multimodal cellular profiles present opportunities for improved understanding of cell heterogeneity in tissues. How the multimodal information can be integrated to obtain a common cell type identification, however, poses a computational challenge. Multilayer graphs provide a natural representation of multi-omic single-cell sequencing datasets, and finding cell clusters may be understood as a multilayer graph partition problem. RESULTS: We introduce two spectral algorithms on multilayer graphs, spectral clustering on multilayer graphs and the weighted locally linear (WLL) method, to cluster cells in multi-omic single-cell sequencing datasets. We connect these algorithms through a unifying mathematical framework that represents each layer using a Hamiltonian operator and a mixture of its eigenstates to integrate the multiple graph layers, demonstrating in the process that the WLL method is a rigorous multilayer spectral graph theoretic reformulation of the popular Seurat weighted nearest neighbor (WNN) algorithm. Implementing our algorithms and applying them to a CITE-seq dataset of cord blood mononuclear cells yields results similar to the Seurat WNN analysis. Our work thus extends spectral methods to multimodal single-cell data analysis. AVAILABILITY AND IMPLEMENTATION: The code used in this study can be found at https://github.com/jssong-lab/sc-spectrum. All public data used in the article are accurately cited and described in Materials and Methods and in Supplementary Information. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。