The aim of the present study was to predict the kinematics of the knee and the ankle joints during a squat training task of different intensities. Lower limb surface electromyographic (sEMG) signals and the 3-D kinematics of lower extremity joints were recorded from 19 body builders during squat training at four loading conditions. A long-short term memory (LSTM) was used to estimate the kinematics of the knee and the ankle joints. The accuracy, in terms root-mean-square error (RMSE) metric, of the LSTM network for the knee and ankle joints were 6.774 ± 1.197 and 6.961 ± 1.200, respectively. The LSTM network with inputs processed by cross-correlation (CC) method showed 3.8% and 4.7% better performance in the knee and ankle joints, respectively, compared to when the CC method was not used. Our results showed that in the prediction, regardless of the intensity of movement and inter-subject variability, an off-the-shelf LSTM decoder outperforms conventional fully connected neural networks.
Estimation of Lower Limb Kinematics during Squat Task in Different Loading Using sEMG Activity and Deep Recurrent Neural Networks.
阅读:5
作者:Zangene Alireza Rezaie, Abbasi Ali, Nazarpour Kianoush
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2021 | 起止号: | 2021 Nov 23; 21(23):7773 |
| doi: | 10.3390/s21237773 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
