Subthalamic stimulation evokes complex EPSCs in the rat substantia nigra pars reticulata in vitro.

阅读:4
作者:Shen Ke-Zhong, Johnson Steven W
The subthalamic nucleus (STN) plays an important role in movement control by exerting its excitatory influence on the substantia nigra pars reticulata (SNR), a major output structure of the basal ganglia. Moreover, excessive burst firing of SNR neurons seen in Parkinson's disease has been attributed to excessive transmission in the subthalamonigral pathway. Using the 'blind' whole-cell patch clamp recording technique in rat brain slices, we found that focal electrical stimulation of the STN evoked complex, long-duration excitatory postsynaptic currents (EPSCs) in SNR neurons. Complex EPSCs lasted 200-500 ms and consisted of an initial monosynaptic EPSC followed by a series of late EPSCs superimposed on a slow inward shift in holding current. Focal stimulation of regions outside the STN failed to evoke complex EPSCs. The late component of complex EPSCs was markedly reduced by ionotropic glutamate receptor antagonists (2-amino-5-phosphonopentanoic acid and 6-cyano-7-nitro-quinoxalone) and by a GABAA receptor agonist (isoguvacine) when these agents were applied directly to the STN using a fast-flow microapplicator. Moreover, the complex EPSC was greatly enhanced by bath application of the GABAA receptor antagonists picrotoxin or bicuculline. These data suggest that recurrent glutamate synapses in the STN generate polysynaptic, complex EPSCs that are under tonic inhibition by GABA. Because complex EPSCs are expected to generate bursts of action potentials in SNR neurons, we suggest that complex EPSCs may contribute to the pathological burst firing that is associated with the symptoms of Parkinson's disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。