Studying Noncovalent Interactions in Molecular Systems with Machine Learning.

阅读:4
作者:Tretiakov Serhii, Nigam AkshatKumar, Pollice Robert
Noncovalent interactions (NCIs) is an umbrella term for a multitude of typically weak interactions within and between molecules. Despite the low individual energy contributions, their collective effect significantly influences molecular behavior. Accordingly, understanding these interactions is crucial across fields like catalysis, drug design, materials science, and environmental chemistry. However, predicting NCIs is challenging, requiring at least molecular mechanics-level pairwise energy contributions or efficient quantum mechanical electron correlation treatment. In this review, we investigate the application of machine learning (ML) to study NCIs in molecular systems, an emerging research field. ML excels at modeling complex nonlinear relationships, and is capable of integrating vast data sets from experimental and theoretical sources. It offers a powerful approach for analyzing interactions across scales, from small molecules to large biomolecular assemblies. Specifically, we examine data sets characterizing NCIs, compare molecular featurization techniques, assess ML models predicting NCIs explicitly, and explore inverse design approaches. ML enhances predictive accuracy, reduces computational costs, and reveals overlooked interaction patterns. By identifying current challenges and future opportunities, we highlight how ML-driven insights could revolutionize this field. Overall, we believe that recent proof-of-concept studies foreshadow exciting developments for the study of NCIs in the years to come.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。