The role of subsurface geomechanics in the green energy transition.

阅读:15
作者:Paluszny Adriana, Zimmerman Robert W
The global energy landscape is currently experiencing a significant shift towards non-hydrocarbon, sustainable energy sources, often referred to as 'green energy'. This transition is being driven by the urgent need to address the problem of global warming caused by greenhouse gases, most of which are generated by the burning of fossil fuels. This article provides an overview of the role that subsurface geomechanics will play in this transition, focusing on green energy technologies such as carbon sequestration, geothermal energy production, hydrogen storage and nuclear waste disposal. The article starts with a review of geomechanical properties and structures that will be relevant to the green energy transition, such as in situ stresses, elastic moduli, strength properties, permeability, faults and fractures. This is followed by introductions to the four green energy technologies mentioned above. The next section focuses on the specific geomechanical challenges associated with each of these technologies, such as surface subsidence, induced seismicity and fluid and contaminant leakage. Gaps in existing knowledge, and potential pitfalls to be avoided, are highlighted. The article concludes with a brief discussion of public perception of environmental risks associated with subsurface energy technologies. It is concluded that geomechanics will play a key role in each of these emerging subsurface energy technologies, and the knowledge and tools that have mainly been developed in the context of fossil fuel exploitation will be key to these developments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。