De novo biosynthesis of 4,6-dihydroxycoumarin in Escherichia coli.

阅读:4
作者:Gan Qi, Jiang Tian, Li Chenyi, Gong Xinyu, Zhang Jianli, Desai Bhaven K, Yan Yajun
Coumarins and their derivatives possess crucial biochemical and pharmaceutical properties. However, the exploration of the coumarin biosynthesis pathways remains limited, restricting their microbial biosynthesis, especially for hydroxycoumarins. In this work, we designed and verified novel artificial pathways to produce a valuable compound 4,6-dihydroxycoumarin (4,6-DHC) in Escherichia coli. Based on the retrosynthesis analysis, multiple routes were designed and verified by extending the shikimate pathway, screening the potential enzymes, and characterizing the enzymes involved. Rare codon optimization and protein engineering strategies were applied to optimize the rate-limiting steps. De novo biosynthesis of 4,6-DHC was achieved using the cheap carbon source glycerol, and the titer can reach 18.3 ± 0.7 mg L(-1). Ultimately, inducible regulation of critical pathway genes with a tetracycline-inducible controller yielded a significant boost in 4,6-DHC production, achieving a titer of 56.7 ± 2.1 mg L(-1). This research successfully created a microbial platform for 4,6-dihydroxycoumarin production and demonstrated a generalizable strategy for synthesizing valuable compounds.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。